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An adaptive finite volume method is presented for solving incompressible heat
flow problems with an unknown melt/solid interface, mainly in solidification appli-
cations, using primitive variables on a fixed collocated grid. A phase-field variable
is introduced to treat the melt/solid interface, which is assumed to be diffusive, so
that the complicated interfaces and phase change (using the enthalpy model) can be
treated easily. The method is implemented through an object-oriented way based on
adaptive mesh refinement and coarsening using dynamic data structures and derived
data types of FORTRAN90. In addition to the refinement on the interfaces or bound-
aries, the mesh can be adapted to a solution based on numerical errors or gradients.
Extensive tests are performed for cases with a fixed or free interface, and excellent
agreement with the body-fitted or front tracking schemes is obtained. Furthermore, by
gradual reduction of the interface thickness, the sharp-interface limit can be reached,
which ensures the correctness of using a diffusive interface. The present approach
is particularly suitable for problems having a complicated interface morphology as
well as phase evolution, such as the phase-field simulation of dendritic growth. Two
examples, without and with convection, are further given and good agreement with
previous results are found. c© 2002 Elsevier Science (USA)

Key Words: adaptive refinement; moving boundary; finite volume method, solidi-
fication; phase-field simulation.

1. INTRODUCTION

In many engineering problems, the interface between phases plays an important role in
the product quality. Hence, its prediction (or design) is an important task in process opti-
mization. However, the intricate coupling of interface morphology as well as its evolution
with heat flow often makes the simulation very challenging. One important category of the
problems is in the solidification processing, such as casting and crystal growth, where the
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interface deformation and its morphological instability due to convective heat and mass
transfer have strong influences on the quality of the solidified materials. Moreover, the
evolution of secondary morphological structures and the formation of a new phase are im-
portant to alloy design, and their prediction is also a great challenge in numerical simulation.
Many numerical approaches [1–18] have been proposed to solve these problems. From the
treatment of the interface, they can be grouped into the so-called front tracking method
[e.g., 1–8] and the fixed-grid approach [8–18]. The front tracking method uses a distin-
guished equation for simulating the interface, while each phase is modeled separately. With
the use of body-fitted coordinates, the front tracking method has been used extensively, es-
pecially in crystal growth modeling. However, the interface morphology that can be treated
by this approach is usually relatively simple. As the morphology becomes complicated, par-
ticularly with the evolution of secondary structures or phase separation, the front tracking
approach is in general less capable.

On the other hand, the fixed-grid approach using a phase-field variable to define the
interface region, which is assumed to be diffusive, while using the same equations for the
whole domain, becomes much more suitable. Although the use of diffusive interface has
its physical meaning, it is more or less a numerical approximation, because in practical
implementation the numerical thickness is still much thicker than the real one. This kind of
approach includes the enthalpy model [8–14], phase-field simulation [e.g., Ref. 15], level
sets [16–18], etc. Although one needs a delicate continuum physical model [9, 15, 19]
for the coexisting two phases in the diffusive interface and in the computational cells,
the complexity of interface morphology and its evolution can be treated implicitly and
easily. Furthermore, for this approach a structured fixed Cartesian mesh is usually adopted,
which is trivial in grid generation. Although the fixed-grid approach has proven to be
powerful in many solidification simulations, there is a severe drawback, especially for
the sharp interface, such as the phase boundary of a pure material. Because the interface
is treated as a diffusive one, several cells need to be allocated in the region. Without a
fine mesh, in addition to the loss of accuracy, the coarse grid often leads to numerical
instability. Putting enough cells along the interface for a structured mesh is not realistic.
Therefore, to implement the approach efficiently, using local mesh refinement or an adaptive
mesh is highly required. Furthermore, as the interface moves away, not to increase the
computational load, mesh coarsening is also inevitable. A new approach proposed recently
using the so-called “cut-cell” [20–22] for front tracking in a fixed Cartesian mesh has also
demonstrated some nice results in the simulation of highly deformed interfaces. However,
this approach can be more difficult to be extended to three-dimensional (3D) problems.
Beside that, similar to the fixed-grid approach, the adaptive mesh refinement (AMR) can
be useful in the cut-cell implementation as well. Furthermore, a powerful approach using
the “immersed boundary technique,” [23] based on a fixed grid for a moving Lagrangian
interface, has also been demonstrated for solidification [24]. Again, the diffusive interface
concept is introduced, and therefore it is regarded as a mixed-type approach, even though
the “front tracking” has been adopted there. Again, AMR should also be useful in such a
technique.

Although the concept of using AMR on the fixed-grid method is simple and the imple-
mentation has been successful for finite element methods (FEMs) [e.g., 25, 26], it is rarely
adopted for finite difference or finite volume methods (FVMs) in two-phase calculations.
Nevertheless, some implementations for a single-phase domain have been reported [27–30],
especially for solving hyperbolic conservation equations having a shock propagation [31].



466 LAN, LIU, AND HSU

FIG. 1. Schematic of an adaptive multilevel mesh for a solid object inside a fluid domain; the mesh is refined
along the interface.

As the adaptive scheme is concerned, two typical cell geometries are generally used for
two-dimensional (2D) problems, i.e., the triangular and quadrilateral cells. The triangular
cells are more popular in the FEM implementation. They are very flexible in cell division,
but the implementation is more difficult due to the need of grid regularization for minimiz-
ing grid skewness and the complicated node numbering. The data structure and the node
reordering could be more difficult as well. On the other hand, the mesh refinement for the
quadrilateral cells on a structured mesh does not suffer the disadvantages. In addition, the
refinement can be quite effective and have many varieties. As illustrated in Fig. 1, with
the multilevel mesh refinement, one can achieve an excellent mesh quality for tracking the
diffusive interface. Furthermore, the grid levels can span the domain over different length
scales, which makes the simulation of multiscale problems feasible. Nevertheless, the dan-
gling nodes are problems in the discretization by the finite difference scheme or FEMs. One
needs different difference formula or shape functions for different node configurations. For
an arbitrarily refinement, the implementation becomes extremely complicated. However,
for the FVM implementation, the mesh is ideal if the vertex points can be avoided during



FINITE METHOD VOLUME FOR SOLIDIFICATION 467

discretization [27–29]. Therefore, this type of refinement is adopted in this study. It should
be pointed out that after refinement this “pseudo-structured” mesh is no longer a struc-
tured one because the number of faces for fluxes in a cell is no longer four, but arbitrary,
for 2D problems. Since the root grid is still a structured mesh (e.g., a uniform Cartesian
grid), the grid generation at the beginning is trivial. Although the FVM approximation for
this kind of refined cells is straightforward, a delicate data structure is also required for
an efficient implementation. Fortunately, from the computer programming point of view,
this mesh fits perfectly into a quadtree data structure. Therefore, the use of pointers could
reduce significantly the programming effort, and the use of C++ or FORTRAN90 becomes
a better choice. Further, using the object-oriented concepts also makes the coding easier
and enhances the reusability of the code. Another implementation using the patch [30] is a
special case, but much less flexible.

As the fixed-grid approach is adopted, the use of a phase-field variable for accurately
locating the interface, which is often referred as interface capturing, is crucial. As mentioned
previously, several methods have been proposed in the literature, including the enthalpy–
porosity method [8–14], level-set methods [16–18], and phase-field models [15, 25, 26].
Again, the “cut-cell” [22] and Lagrangian-cell algorithms (immersed boundary method)
[23, 24] are regarded as front tracking here. The phase-field and level-set models require
the solution of an additional equation for the phase-field variable, while the enthalpy model
obtains the phase-field variable by simple interpolation from temperature fields. For all
of the methods, the interface thickness is not zero due to the diffusive nature of the finite
cell size, even for a sharp interface. Although the enthalpy method seems to require less
effort for computation, it is notorious by its slow convergence and instability due to the
large source term in the energy and momentum equations, especially when the grid number
is not enough to describe the two-phase region. One also needs to use an exceptionally
large viscosity for the solid phase, while the physical properties in the two-phase region
are obtained by interpolation. Including the porosity model [11] may allow one to treat
the no-slip boundary implicitly. More importantly, the difference between the liquidus
and solidus temperatures restricts the cell size used. Therefore, for a sharp interface, an
extremely fine mesh is required for a realistic simulation. On the other hand, the phase-field
method using a smooth phase-field variable, which is obtained by solving the phase-field
equation, often converges much faster. Therefore, it is believed that the combination of
both concepts may help the convergence, but the solution of the phase-field equation is
not necessary, at least for macroscopic solidification. Furthermore, through AMR, one
can further gain both the efficiency and the accuracy. To our best knowledge, such an
implementation based on the adaptive pseudo-structured mesh has not yet been reported
before.

In addition to the interface capture, the numerical solution of incompressible heat flow
using the pseudo-structured mesh, which is also a collocated grid, is necessary. Recently,
the numerical procedures using primitive variables and the SIMPLE scheme for pres-
sure/velocity coupling have been proposed for single-phase problems [27–29]. However,
the solution of two-phase equations could be more difficult due to the large variation of
the physical properties across the interface region, where a scheme for volume averaging is
usually required. Furthermore, the large source term due to the heat of fusion and the viscous
friction (the interactive force between two phases) [15, 19] of the interface region may de-
grade the convergence as well. Although a finite difference technique known as “immersed
interface method” [23, 24] may not require the volume averaging, the use of discontinuous
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coefficients is necessary. Hence, the computer programming with the mesh refinement is
not so easy. Furthermore, the scheme becomes tedious as the order or accuracy is upgraded
to two or higher. Indeed, as the sharp interface is treated as a diffusive interface, one needs to
take care of the phase change and two-phase flow there, and they are considered in the source
terms of the energy equation and the momentum equation, respectively. Nevertheless, the
adaptive FVM scheme is believed to be attractive to the solution of multiphase flows having
complicated interface morphology. In this study, we propose an iteration procedure starting
from a thick interface. As the mesh refinement proceeds, the interface thickness is reduced
gradually to approach the sharp interface limit. As will be discussed shortly, a variety of
problems can be simulated easily through this approach. Again, such an implementation
combined with AMR has not yet been found in the literature.

In the present report, an adaptive finite volume method (AMR/FVM) scheme using the
fixed-grid approach for solidification problems is presented. A phase-field variable, based on
a hyperbolic tangent function and thermal fields, is introduced first, so that the macroscopic
phase change, where the interfacial energy is not important and the interactive force between
solid and melt phases can be properly simulated. Through the adaptive mesh refinement
and coarsening, both accuracy and efficiency of the model can be achieved. In addition to
the phase change simulation, conjugated heat flow problems having complicated immersed
boundaries can be easily simulated. When the capillary effect is important at the interface,
the solidification temperature is no longer the equilibrium one from the phase diagram. This
is typical for microscopic solidification, such as dendritic growth, where a proper phase-
field variable satisfying thermodynamic constraints needs to be used in order to incorporate
the contribution of the interfacial energy. In such case, the phase-field model [15, 25, 26] is a
better choice for the phase-field variable. The present AMR/FVM scheme also perfectly fits
into this category, especially for the dendritic growth. Sample calculations will be illustrated
shortly. In the next section, a general physical model is described. The numerical scheme
is discussed in detail in Section 3, where the concept of data structures and their computer
implementation for AMR and error estimators are discussed. Section 4 is devoted to results
and discussion, followed by conclusions in Section 5.

2. FORMULATION FOR PHYSICAL PROBLEMS

To model a general two-phase heat flow problem by the fixed-grid approach, the sharp
interface (phase boundary) needs to be treated as a diffusive region first [19]. Inside the re-
gion, the physical properties are estimated by a mixing law through a phase-field variable φ.
The phase-field variable is in general a continuous function ranging from 0 (liquid) to
1 (solid). In the context of the finite volume formulation, the mixing law may also be as-
sumed to be valid inside the control volume (CV). For example, the velocity of the mixture
can be estimated by v = (1 − φ)vl + φvs , where vl and vs are the liquid and solid veloci-
ties, respectively. Other intrinsic properties can also be estimated in the same way [15, 19].
Furthermore, in this study, the solid is assumed to be stationary and rigid (vs = 0), so that
further simplification can be made. The density of the liquid and solid is further assumed
to be the same here, which makes the treatment of phase change much easier. The liquid
is assumed to be incompressible and Newtonian, while the Bounissque’s approximation is
further adopted. By following the volume-averaging procedure [15, 19], the conservation
equations for the mass, momentum, and energy can be derived as the following:



FINITE METHOD VOLUME FOR SOLIDIFICATION 469

Equation of Continuity

∇ · (ρv) = 0, (1)

where v = (1 − φ)vl for vs = 0 and ρ is the average density.

Momentum Equation

∂

∂t
(ρv) + ∇ · (ρvv) = ∇ ·

(
µl

ρ

ρl
∇v

)
− ∇ P + ρB + ρ

ρl
F, (2)

where B is the body force, such as the gravitational acceleration g, and F accounts
the dissipative viscous force in the liquid due to interactions with the solid in the diffu-
sive region [15, 19]; µl is the liquid viscosity and ρl the liquid density. Again, in the above
equation the two-phase mixture is assumed to be Newtonian as well. For the interactive
force F, the approach proposed by Beckermann et al. [15] is adopted here, i.e.,

F = −Cµlφ
vl

δ
|∇φ|, (3)

where C and δ are empirical constants. Beckermann et al. [15] used the analytical result of
the Poiseuille flow between two plates to fit the model and got C = 2.757. Also, δ is related
to the interface thickness. According to the definition in [15], the interface thickness can be
taken to be about 6δ. For a thin interface (small δ), the constant C seems to be insensitive to
the result if it is large enough. In addition, the phase-field variable φ needs to be specified.
For a typical solid/liquid boundary, the form of hyperbolic tangent used in the phase-field
simulation [15, 25, 26] can be adopted, i.e.,

φ(d) = 1

2

[
1 − tanh

(
d

2δ

)]
, (4)

where d is the normal distance from the interface. For the solidification of a pure material,
if one does not want to introduce the phase-field equation, the normal distance d needs to
be calculated efficiently. Of course, this is used for macroscopic solidification, where the
capillary effect can be ignored. Because the isotherms are parallel to the interface near the
solidification interface, one may take this into account for estimating the distance. For an
equilibrium interface with the melting point Tm and with a normal unit vector n = ∇T/|∇T |,
the distance to the interface can be estimated by d = (T − Tm)/|∇T |. Therefore, Eq. (4)
can then be rewritten as

φ(T ) = 1

2

[
1 − tanh

(
T − Tm

2δ|∇T |
)]

. (5)

From this equation, |∇φ| can be derived, i.e., |∇φ| = |(∂φ/∂T )∇T | = (φ − φ2)/δ. Again,
the above treatment is valid for an equilibrium interface with the solidification or melting
temperature at Tm . This is quite true for macroscopic solidification, such as bulk crystal
growth or casting. However, when the kinetic or capillary effect is important, such as the
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dendritic growth, other approaches, such as the phase-field model, to define the phase-field
variable are necessary. The final interactive force becomes

F = −Cµl

(
φ

δ

)2

v. (6)

Equation (6) is the same as that derived by Beckermann et al. [15]. However, the phase-
field variable defined by Eq. (5) allows us to find the phase-field variable directly from
temperature rather than solving the phase-field equation. Indeed, for a macroscopic Stefan
problem, where the interfacial energy is generally neglected, the present approach can be
regarded as a modified enthalpy–porosity model. However, as compared with the traditional
approach [8], the convergence characteristics are greatly improved.

Energy Equation

∂

∂t
(ρH) + ∇ · (ρvHl) = ∇ · (k∇T ), (7)

where H is the enthalpy. In each phase i , Hi = ∫
Ci dT + H 0

i , i = l or s, Ci is the specific
heat, and H 0

i is the reference enthalpy; the heat of fusion is assumed to be constant, i.e.,
�H = Hl − Hs . In addition, k is the thermal conductivity of the mixture. Therefore, for a
constant Ci and H = φCs T + (1 − φ)(Cl T + �H), one can rewrite the energy equation as

ρCi
∂T

∂t
+ ∇ · (ρvHl) = ∇ · (k∇T ) + ρ�H

∂φ

∂t
. (8)

Clearly, the heat of fusion during solidification appears as a source term in the energy
equation.

With the introduction of the Bounissque’s approximation, the body force term ρg can
be rewritten as ρβT g(T − Tm); the static pressure is then absorbed into the pressure term;
βT is the thermal expansion coefficient. For the ease of discussion, the above equations are
further transformed into dimensionless form after characteristic variables are chosen. In
this study, we have chosen the system height (L) as the characteristic length and αl/L as
the characteristic velocity, where αl is the thermal diffusion coefficient. Therefore, one can
easily get the associated thermal Rayleigh number Ra and the Stefan number St as

Ra = βT g�T L3

νlαl
; St = Cl�T

�H
,

where �T is the temperature difference and νl the kinematic viscosity of the melt. Also,
the Prandtl number Pr = νl/αl .

The boundary conditions adopted in this study are quite simple. For the solid wall, the no-
slip boundary condition, i.e., v = 0, is used. For the dentritic growth in a forced convection
in Section 4.3, the out-flow boundary condition is used for velocity, where the overall mass
conservation is forced. The thermal condition is set to be either adiabatic or at a constant
temperature. For time-dependent calculations, the zero velocity and the wall temperature
are used as the initial condition.
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3. NUMERICAL METHOD

To solve the previous equations, we have adopted a finite volume method using an
arbitrary control volume (with an arbitrary number of faces) [27–29], even though we only
consider the Cartesian mesh here. Due to the adaptive nature, we have purposely avoided
the use of vertex (corner) points through a special interpolation scheme [29], which will be
discussed in detail in the following sections. Because the adaptive mesh and its related data
structures need to be constructed first before the numerical implementation, we shall discuss
them first in Section 3.1. Also, their implementation requires a dynamic data structure based
on a quadtree for refinement (the cell subdivision) through the pointers of FORTRAN90
and the derived types. We give an example of the programming there as well. Section 3.2
is devoted to the core FVM approximation. Since the primitive variables are used, the
velocity/pressure coupling using collocated grids and the SIMPLE scheme are adopted and
will be described briefly in Section 3.3. The numerical solution of the linearized equations
during each nonlinear iterations is discussed in Section 3.4, followed by the error estimators
and the solution procedure in Section 3.5.

3.1. Adaptive Mesh Refinement Algorithm

The solution of previous equations is carried out on a rectangular domain with an initial
mesh (defined as the first level or the root level), as shown in Fig. 2a as an example. At this
level, the finite volumes are very coarse having only three cells. As the calculation proceeds,
mesh refinement or coarsening (not on the root level) needs to be carried out depending
on the predefined criteria, which can be set by the geometry, error estimators, or variable

FIG. 2. Schematic of mesh refinement and data structure: (a) mesh, (b) topological view of refinement, (c) data
structure.
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gradients, etc. For example, if one finds the second cell needs to be refined, the second level
is added and new four cells are born, namely the cells 4 to 7, as shown in Fig. 2b. Since these
mesh are used for control volumes, the variables are stored at the geometric center of each
cell. Therefore, the dangling node is not used to store the data there. The corresponding
data structure is then constructed as shown in Fig. 2c, and it is a typical quadtree. Each cell
carries its own information including the node identification (ID), level, coordinates, and
related properties. Therefore, to implement AMR efficiently, a careful design of the data
structure and search schemes (finding itself and neighbors) becomes crucial. In addition to
refinement, which adds cells and data, coarsening that deletes cells and data is necessary.
One may use FORTRAN77 to design such a data structure through pseudodynamic memory,
which needs to declare a large array, as well as a linked list. However, removing cells and
data during coarsening becomes troublesome. To avoid the waste of memory, one would
need a special data collapsing operation. Therefore, the use of pointers and dynamic data
structures as well as the recursive features, which are available in C++ and FORTRAN90,
makes the design of the data structure much easier. As shown in Fig. 2c, the data structure
turns out to be very simple and each cell has its own ID and requires only two pointers;
one points to its next cell at the same level and one points to its first kid in the next level.
In this study, we have adopted FORTRAN90 to develop the data structure and perform
related numerical calculations. FORTRAN90 and C++ have very similar features. However,
there are still some problems that need to be resolved. For example, there are no pointer
arrays available in FORTRAN90. Therefore, further using derived data types for arrays is
necessary. Nevertheless, the derived data types and the modular design in FORTRAN90 are
very suitable for the FVM implementation. More importantly, the concept of object-oriented
programming can be further adopted, which makes the coding and debugging much easier.

After the data structure (e.g., defined by a new type called CellTree) is developed, a
searching scheme is also important, which includes the way for traveling in the quadtree
and for finding cell neighbors. The depth first search (DFS) is further adopted. For each
parent node, DFS goes through the tree starting from the root level until the youngest level
(without any kid cells) is reached. A sample code (traverse demo) is illustrated in Fig. 3
for reference. As shown in the main program, the cell tree is a module to define all the
data related to the cell, such as the temperature, velocities, etc. Also, C is a new derived
type called CellTree, and so a node. The nodes start and current are pointers; the node
start points to (⇒) the cell StartCell, then calls DFStraverse to perform DFS. As shown
in the subroutine, the subroutine DFStraverse for DFS needs to be recursive (it can call
itself). In DFStraverse, one needs to check if the next cell is null (empty) or not. If not, the
search continues by calling DFStraverse (itself) until the youngest cell is reached. Once this
search scheme is set up, the most laborious task is to find neighbor cells. There are several
approaches that can be used. If one can avoid any floating point operations, the neighbor
search can be very fast. After it is finished, the coding for FVM is as easy as that on a simple
structured mesh.

3.2. Finite Volume Method

The general form of the previous conservation equations can be written as

∂ϕ

∂t
+ v · ∇ϕ = ∇ · �∇ϕ + Sϕ, (9)
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FIG. 3. A sample FORTRAN90 code for the DFS scheme.

where ϕ represents the velocities and temperature, respectively; � is the diffusivity; and Sϕ

is the source term. One can also represent it by an integral form, which is more suitable for
the finite volume approximation, i.e.,

∂

∂t

∫
V

ϕ dV +
∫
V

v · ∇ϕ dV =
∫
V

∇ · �∇ϕ dV +
∫
V

Sϕ dV , (10)

where V is the control volume (CV). One can apply Eq. (10) to each cell, such as the cell
P in Fig. 4, to get the discretized form of the conservation equations. The various terms
involved in the FVM approximation are discussed in detail as follows:
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FIG. 4. Schematic of finite volume cells P and Nb and related notations.

Convective Term

Using Gauss’s divergence theorem, the volume integration of the convective term can be
transformed into a surface integral resulting in a simple convective flux balance of variable ϕ:

∮
ϕv · n d S ∼=

4∑
c=1

n(c)∑
i=1

ϕi mi Si , (11)

where ϕi is the variable defined at cell face i , mi the mass flux, and Si the surface area
of cell face i . In the above expression, the cell faces are grouped into four sides (c = 1, 2,
3, and 4), which corresponds to the orientation labeled by s, e, n, and w shown in Fig. 4.
After refinement, the neighbor cells may be divided, and in each side the number of faces
increases to n(c). Although we have used a Cartesian grid for the study, in principle, the
CVs are not restricted to the quadrilateral cells. Other types of cells can be used. As will
be mentioned shortly, to maintain the second-order of accuracy, the variables used for the
mass flux are evaluated at the cell faces. To stabilize the scheme, a special treatment, such
as deferred correction [27, 28], is necessary.

Diffusive Term

Again, Gauss’s divergence theorem is applied, i.e.,

∫
V

∇ · �∇ϕ dV =
∮

�∇ϕ · n d S ∼=
4∑

c=1

n(c)∑
i=1

�∇ϕ · (nS)i . (12)

However, in above equation, there are several ways to approximate ∇ϕ. For example, a
straightforward approximation can be derived easily from simple vector calculus. Taking
face e in Fig. 4 as an example,

∇ϕ · (nS)e = ∇ϕ · Ae = ϕNb − ϕP

L PNb

Ae · Ae

Ae · eξ

+ ϕ3 − ϕ2

Se

Ae · Ae

Ae · eξ

t · eξ , (13)

where L PNb is the distance between nodes P and Nb, t the tangential unit vector at cell face
e, and eξ the unit vector in the ξ direction. Also, Ae is the surface vector, Se the surface area,
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ϕP the variable value at the cell center, ϕNb the variable value at the neighbor cell, and ϕ2 and
ϕ3 are the values at two corners (ϕ2 and ϕ3) of cell face e. Unfortunately, this formulation
requires the variable at the corners to be evaluated, which is particularly troublesome when
the neighbor cell Nb is refined. Therefore, another formulation using the cell values only is
adopted [29], i.e.,

∇ϕ · Ae = ϕNb − ϕP

L PNb

Ae · Ae

Ae · eξ

+ (∇ϕ)e ·
(

Ae − eξ

Ae · Ae

Ae · eξ

)
. (14)

Although the above approximation does not require the vertex values, the approximation
of the gradient at the cell face (i.e., (∇ϕ)e) is necessary. Two approaches are adopted here.
The first one is to evaluate the values of ∇ϕ at the center of the related cells and then the
value at the cell face is interpolated linearly from its adjacent cells. The second approach is
to find the best fit by the least-square method from all neighbor cells [27]. Both approaches
work well in this study, but the former approach takes less effort in computation.

Body Force

Finally, the body force is evaluated by simply assuming that the variable at the cell center
is at its mean value

∫
V

Sϕ dV = (Sϕ)P�V, (15)

where �V is the cell volume.
The above approximations give the final discretization a second-order accuracy and have

been used for all equations except the equation of continuity, which needs special attention
as discussed in the next section.

3.3. Velocity/Pressure Coupling

Since the pressure variable does not appear explicitly in the continuity equation, the use
of linearly interpolated velocities at cell faces for a collocated grid could lead to the velocity/
pressure decoupling or the so-called checkerboard oscillation of pressure. In order to amend
this, the idea of Rhie–Chow momentum interpolation scheme [32] is adopted. In other words,
the velocity values required (at cell faces) for the continuity equation are interpolated from
the momentum equations, rather than linearly from the adjacent nodal values.

The simplest way of finding a correct pressure field to satisfy the equation of continuity is
through the SIMPLE scheme [33], where the pressure correction is used to find the velocity
correction through the momentum equation. Detailed description of the scheme can be
found elsewhere [27–29, 33, 34]. In brief, based on the SIMPLE scheme one can obtain the
equation for velocity correction, by ignoring the off-diagonal terms, as

v′
P = −�V

AP
∇ P ′

P , (16)

where v′
P and P ′

P are the correction velocity and pressure, respectively, and AP is a dia-
gonal constant obtained from the linearized equation of the momentum equations. The new
velocity and pressure can be updated by vP + v′

P and PP + P ′
P . However, as one wants
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to substitute the velocities into the equation of continuity to get the equation for pressure
correction, the values at cell faces are necessary. Unfortunately, the interpolation directly
from adjacent nodes does not introduce the actual pressure gradient there. The so-called
“2-δ” pressure difference causes a decoupling at even and odd nodes. Instead, one would
require the pressure values right at the both sides of the cell face (the so-called 1-δ gradient).
Therefore, the idea of Rhie and Chow [32] is to replace the original 2-δ pressure gradient
by the 1-δ one. By doing so, we obtain the volumetric flow rate J ∗

f at cell face f as

J ∗
f = v∗

f · A f − (�VP + �VNb)

(AP,P + AP,Nb)

(
PNb − PP

L PNb
− (∇ P) f · eξ

)
A f · A f

A f · eξ

, (17)

where v∗
f is the velocity obtained by linear interpolation from the nodes P and Nb, and AP

is again a diagonal coefficient. Putting the volumetric flow rate back into the equation of
continuity, the equation for the pressure correction can be obtained:

∑
J ∗

f =
∑

f

(�VP + �VNb)

(AP,P + AP,Nb)

P ′
Nb − P ′

P

L PNb

A f · A f

A f · eξ

. (18)

The above equation can then be reformulated into a set of linearized equation for each cell

AP
P P ′

P −
∑
Nb

AP
Nb P ′

Nb = bP
P , (19)

where AP
P or Nb are the related coefficients and the source term bP

P is related to the residual
volumetric flux

∑
J ′

f . After the pressure is corrected, the correction velocity is obtained by
Eq. (16). The velocity values can then be corrected for the next iteration. Once the iteration
converges, the equation of continuity is satisfied.

3.4. Solution of Linearized Equations

The implicit backward difference scheme is further adopted for the time derivative. By
summing all the terms, one can obtain the linearized equation, similar to the pressure
correction, for each cell

Aϕ
PϕP −

∑
Nb

Aϕ
NbϕNb = bϕ

P , (20)

where the coefficients are frozen during linear iterations. In order to retain second-order
accuracy, while keeping the linear iteration easier to solve, the coefficients obtained by
upwinding for the convection terms are used on the left-hand side of Eq. (20), while the
central-differencing terms are moved to the right-hand side. On the right-hand side, the
upwinding terms are also added to make equations exact as they converge. This is the so-
called deferred correction [27, 28] and has been used widely in previous calculations using
structured grid. The solution of the linear equation set takes most of computing effort in the
simulation. An efficient way for solving it is crucial. However, since the matrix losses its
structured pattern after mesh refinement, the use of traditional solvers, such as SIP (strong
implicit procedure [35]), is not feasible. Therefore, two types of solvers are examined. One
is the Gauss–Siedel (GS) method and one is the ILU(0) preconditioned conjugate gradient
square (CGS) method. In general, CGS provides a much faster convergence. However, it
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takes much more computer memory. A trade-off is to use diagonal scaling instead of ILU(0)
for the preconditioner, but with less robustness. Furthermore, we found that the biggest
difference is in the convergence of the continuity equation. Take the heated square problem
[36] as an example; Ra = 105 and Pr = 0.71. The convergence of ILU(0)-preconditioned
CGS takes less than 20 iterations, while the GS solver takes more than 250 iterations,
for three orders of reduction in the residual. Since we have the multilevel grids and data
structures being used, multigrid methods [e.g., 34, 36] can be adopted as well. However,
in the present calculations, the single-grid solver is adequate. Indeed, for 3D applications,
multigrid methods should be considered seriously.

3.5. Error Estimation and Solution Procedure

To implement AMR efficiently, the criteria for mesh refinement or coarsening are im-
portant. The geometric criteria can be easily implemented. As one gives the distance to
the interfaces or the minimum cell size there, the level of grids can then be determined
for refinement or coarsening. On the contrary, estimating numerical errors is much more
troublesome. The most straightforward way is through the Richardson extrapolation if the
solutions at different levels of grids are available. However, this approach is not quite robust,
because one has to ensure the convergence at different levels of grids. Therefore, we need
error estimators here that do not require the multigrid solutions. Moreover, the estimators
need to be robust and take little computational effort. As will be discussed shortly, even with
a robust error estimator, getting a cost-effective solution still requires some trial and error.
Therefore, in practice a single error estimator is not adequate. Several error estimators are
required for choice.

Typically, the calculated local errors are proportional to the gradients of variables. There-
fore, we have first adopted the normalized gradients as one of the error estimators. In most
cases, such an estimator is adequate. Since the variable gradient is a by-product of the
calculation for each cell, it can be regarded as a good error estimator. The second approach,
which uses the normalized truncated error, is also quite easy to compute. Take a simple
cell, shown in Fig. 4, for example. For getting a third-order variation of the variable ϕ from
nodes P to Nb, we can use the boundary conditions from the two contiguous cells as

ξ = 0: ϕ = ϕ0; (∇ϕ)
ξ
0 = (∇ϕ)0 · ξ,

ξ = 1: ϕ = ϕ1; (∇ϕ)
ξ
1 = (∇ϕ)1 · ξ. (21)

The variable variation along ξ is then represented by a cubic form:

ϕ(ξ) = C0 + C1ξ + C2ξ
2 + C3ξ

3, (22)

where the constants Ci (i = 0, 3) can be determined from the boundary conditions in
Eq. (21). The new face values, ϕ̃ f and (∇ϕ)

ξ
f , calculated by the above equation can then

be used for the flux estimation. The new convective (F̃C) and diffusive (F̃D) fluxes can be
written, respectively, as

F̃C = m f ϕ̃ f ; F̃D = −(∇ϕ)
ξ
f (ξ · n), (23)

where m f is the mass flux. The total difference between the new fluxes (based on the
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third-order approximation) and the original ones (second-order) is obtained:

τ =
∑

f

�(F̃C − FC) + (F̃D − FD)�. (24)

Because this value also depends on the cell volumes as well as face areas, a normalized
value should be used. A typical way is to normalize the value by dividing it with Aϕ

PϕP .
One can further use the new fluxes to calculate the variable (ϕnew

p ). More importantly, the
error (e = ϕnew − ϕ) also satisfies the following equation [28]:

Aϕ
P eP −

∑
Nb

Aϕ
NbeNb = −τ. (25)

Since the coefficients in the above equations are already available after each iteration, the
estimation of the error requires little effort to compute. In fact, for most of the situations
(diagonally dominant cases), τ is proportional to e, but e is smoother than τ . Accordingly,
the quality of refinement by both values is about the same in all cases here.

In summary, the whole solution procedure is illustrated in Fig. 5. The SIMPLE iterations
also include the calculation of the phase-field variable. Once the iterations converge (or near),

FIG. 5. Iteration scheme of the adaptive finite volume method; the adaptive mesh refinement (AMR) also
updates variables by interpolation or averaging, geometry related quantities, and data structures.
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the mesh refinement then adapts to the interface according to the phase-field variable.
Because the interface thickness (6δ) should smear several cells for a reasonable solution,
its value at the beginning needs to be large enough for convergence. Once the solution
gets better and the interface position is located, its value is further reduced. Through such
a procedure, as the solution converges, the sharp interface limit can be reached as well.
Furthermore, for time-dependent calculations, the solution procedure is the same as the
steady-state one at each time step. Therefore, the same program can be used for both cases.
Nevertheless, the refined area cannot be too thin if one wants to use a bigger time step for
calculation. For phase-field simulation, the time step used is small, so that the interface
thickness can be very thin and this reduces the cell number significantly.

It should be pointed out that there is no a simple way to obtain a cost-effective solution
(a better solution with less effort). Take the heated square [36] as an example again for
Pr = 0.71 and Ra = 105. The isotherms are shown in Fig. 6a and the calculated errors for
Nusselt number (� Nu) based on two different refinement criteria are shown in Fig. 6b. In
Fig. 6b, the solution based on uniform meshes is also shown (the straight line), and the
mesh-independent solution is obtained from the Richardson extrapolation using the finest
two levels of grids. As shown by the convergence slope for the uniform mesh, it shows a
nice second-order of accuracy; the slope based on cell number is −1. The refinements by
temperature and velocity errors show very different behaviors. The refinement based on
velocity is more effective at the beginning, but it degrades as the cell number increases.
The refinement based on temperature gives a more consistent result; the error decreases as
the cell number increases. If we use three levels of grids for calculation, the final meshes
for refinement based on temperature and velocity are shown in Fig. 6c, respectively, on
the left (1042 cells) and the right (946 cells); the initial error counters are shown by the
dashed lines. As the refinement continues, the error reduces and becomes more uniform.
As a result, its contours show many local maximum values. Therefore, to avoid confusion,
we only illustrate the initial errors here (before refinement is performed). As shown, the
refinement based on temperature errors tends to allocate cells at the place with higher
thermal gradients. The refinement based on velocity is slightly different, but still having
more cells inside the velocity boundary layer near the wall. Interestingly, as shown in Fig. 6b
for velocity, as the cell number is greater than 1000, the error with more refinements tends
to approach to the result of the uniform mesh. As we further examine the meshes at two
refinement criteria for velocity shown in Fig. 6d, indeed the further refined grid tends to
be uniform (on the right having 4678 cells). Therefore, the result for velocity refinement
is reasonable that the error with refinement is still less than that with a uniform mesh for
the same number of cells. However, it is just hard to make a decision where to stop the
refinement because the further refinement does not guarantee the decrease of the error
(if �Nu is the error indicator). Therefore, in general, it is difficult to define a universal
rule for a cost-effective refinement. Some trial and error is still inevitable. Regardless all
the troubles, for solidification applications, the refinement can be simply carried out on
the diffusive interface region, and significant saving in CPU time can be expected. If the
initial refinement period is ignored, in the present case, the CPU time is in the order of
(No. of CVs)1.8 for both uniform and nonuniform grids after the grid is fixed, which is
comparable to the previous study [34]. The overhead for the unstructured mesh is very
little. For the case of 2,500 cells, it takes less than 2 minutes in a Pentium-III/800 MHz
personal computer for the residuals of temperature and velocity to be reduced five orders of
magnitude.
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FIG. 6. Sample refinement results for heated square: (a) calculated isotherms based on a coarse mesh (spacing
of isotherms = 0.09091); (b) convergence of the average Nusselt number for different refinement schemes; after
the mesh is fixed, CPU time scales about (No. of CVs)1.8; CPU time is about 2 min for 2500 CVs (Pentium-
III/800 MHz). (c) meshes (1042 CVs on the left and 946 CVs on the right with three levels) and errors for
temperature (left) and velocities (right); (d) the meshes for two refinement thresholds: 0.3 (left, 1678 CVs) and
0.1 (right, 4678 CVs) on the velocity.

4. RESULTS AND DISCUSSION

Before applying the AMR/FVM scheme to solidification, which contains a free or moving
interface, we have tested first the method using problems having complex immersed bound-
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aries in the domain in Section 4.1. As will be shown, as the thickness of the diffusive interface
is small enough, the calculated solution based on the two-phase model agrees very well
with the body-fitted one. In Section 4.2, the calculation is then performed for solidification
problems using the modified enthalpy–porosity model, which is applied for macroscopic so-
lidification that the interfacial energy contributes very little to the solidification temperature.
The final examples are illustrated in Section 4.3 for the microscopic solidification using the
dendritic growth as examples, where the interfacial energy (the local curvature of the inter-
face) plays an important role. In such cases, the phase-field equation is considered so that
the interface curvature and thickness can be determined implicitly. As will be illustrated,
the simulation could be quite cost-effective as compared with that by a uniform mesh.

4.1. Applications on Problems with Fixed Complex Immersed Boundaries

The first example is illustrated again for the heated square, but with a highly conductive
sphere inside (100 times higher in the thermal conductivity), as illustrated in Fig. 7a. The

FIG. 7. (a) Schematic of a highly conductive sphere in a heated square; (b) initial AMR mesh having 5776 cells
(6 levels) and δ = 5 × 10−4 (left) and body-fitted mesh (right).
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calculated result using Fluent, a commercial FVM code based on a body-fitted coordinate,
is used for benchmarking. Figure 7b shows two typical meshes used for calculation; the left
one is an initial mesh (six levels in the diffusive boundary) based on AMR/FVM, while the
right one is an unstructured body-fitted coordinate generated by Fluent. The size of the finest
grid here is 1/640. The comparison of isotherms is shown in Fig. 8a for δ = 5 × 10−4; the
interface thickness is defined by 6δ being 3 × 10−3 [15]. As shown, the agreement near the
sphere is reasonably good. However, at the upper and lower boundaries, the errors are not
trivial due to the coarse cells used there. To further refine the solution, the local refinement
is performed based on velocity errors (only four levels of grids are used for the refinement,
while six levels are used in the diffusive interface). As shown on the left-hand side of Fig. 8b,

FIG. 8. (a) Comparison of calculated isotherms based on the meshes in Fig. 7b; (b) comparison of isotherms
(left) using the final refinement mesh (right) based on error estimators (error contours (refinement criteria: |e| = 0.4
and 4 levels) before each refinement are shown by the dashed lines with the mesh) and interface thinning; the solid
lines are obtained by fluent and dashed lines by the present code. Spacing of isotherms = 0.05 and δ = 5 × 10−4.
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excellent agreement is obtained for the whole domain. The final mesh (10,150 cells with
six levels of grids) is shown on the right-hand side of Fig. 8b; all the error contours during
refinements also shown by the dashed lines. As shown, more cells are allocated in the region
with larger errors. At the initial stage (with an uniform mesh), the errors appear mainly near
the boundaries and the maximum value is about ±11.08. As the refinement continues, the
magnitude of the errors decreases and the errors distribute more uniformly. At the final
stage before the last mesh refinement is taken, the maximum error (near the upper right
and lower left regions) is in the order of 0.4. Therefore, the error contours shown there are
for |e| = 0.4. In this calculation, the coarsening stage is removed. Also, we do not restrict
the level difference for adjacent cells. Therefore, in some places, one may fine the larger
level difference as high as 3. It is believed that the discretization error increases as the level
difference increases; one may find the interpolation by distance at the cell face becomes
unrealistic. On the other hand, restricting the level difference between contiguous cells to
1 improves the accuracy and the cells are well distributed, but one may need more cells.
Therefore, there is always a tradeoff there that needs to be determined by the users, and it is
problem dependent. As will be illustrated later for the phase-field simulation, to maintain
smooth isotherms, the level difference for adjacent cells is restricted to one. In such a case,
the grid distribution is much smoother.

In this example, the interface thickness (6δ) plays an important role in the solution
accuracy. We have examined several δ values, and found that it needs to be small enough
for getting a reasonable result. In other words, without refinement, one needs to use a
large number of cells for calculation. Figure 9a shows the distribution of the phase-field
variable (left) and the x-component (u) of the velocity (right) near the interface at x = 0.5 for
δ = 0.01. Apparently, as the grid is refined, the solution converges but the velocity decays
slowly across the solid; in reality, it should be zero in the solid due to the no-slip condition. In
order to make the solution more realistic for the sharp interface, the thickness of the interface
needs to be further reduced. Figure 9b shows the effect of the interface thickness on the
velocity and temperature profiles near the interface. As shown, as the interface thickness
is reduced, the solution becomes more realistic. This is the reason for using a very small δ

value in the benchmark comparison in Fig. 8. If one uses a uniform mesh while using such
a small δ value, the cell number increases linearly with the domain area, while in the AMR
scheme it increases with the arclength of the immersed boundaries. This is the key to make
AMR successful in the calculation.

Other criteria can also be used for refinement, but the results are similar. Again, one
may further restrict the level difference between contiguous cells to be one or two, which
usually makes the calculated isotherms smoother. Presumably, the accuracy may be further
improved. For the phase-field simulation of dendritic growth, we have found that this
criterion seems to be quite important.

Because of the use of the fixed-grid approach, the complexity of the immersed boundaries
can be arbitrarily increased. For example, as shown in Fig. 10a, the number of spheres is
increases to 18. As shown, the mesh based on the refinement near the interface and velocity
error allows us to use a reasonable number of cells (27,472 cells with seven levels of grids)
to get a result shown in Fig. 10b, where the velocity vectors and the isotherms (dashed lines)
are presented. A further extension of the problem for simulating the heat flow in a porous
media with a known solid structure is thus feasible. It should be pointed out that the cut-cell
approach proposed by Ye et al. [22] could also be useful for calculating the viscous flow
with complex immersed boundaries. Because the structured grid was used, they required
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FIG. 9. (a) Effects of grid levels on the distribution of the phase-field variable (left) and the x-component
velocity (right) across the interface at δ = 0.01; (b) the effects of interface thickness (6δ) on the distribution of
velocity (left) and temperature (right) across the interface.

a large number (256 × 256) of cells for calculation. Therefore, through AMR/FVM, it is
clearly that the problems with complex boundaries can be easily treated. In addition to the
refinement on the interfaces or boundaries, allocating cells based on numerical errors, or
wherever it needs, is also helpful for further improving the accuracy.

4.2. Applications on Free or Moving Interface Problems

The second category of the simulation is devoted to macroscopic solidification problems.
The first example is the heat flow and the interface shape in a horizontal Bridgman crystal
growth, which is a popular process for growing compound semiconductor crystals. A typ-
ical configuration is illustrated in Fig. 11a; the crucible is neglected. The material is kept
in a molten state on the left (with the temperature TH higher than the melting point Tm),
while on the right, the heat is removed for solidification (with a cooler temperature at TC).
Due to extremely low growth rate, the interface movement is neglected. For a stationary
state with constant TH (= 1) and TC (= 0) the position and the morphology of the interface
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FIG. 10. (a) Final adaptive mesh (27,472 cells with 7 levels of grids; δ = 5 × 10−4) for 18 spheres in a heated
square; (b) the calculated velocity and thermal fields. Spacing of isotherm contours is 0.1.

are coupled with the heat transfer and melt flow. This problem has been solved extensively
as a benchmark problem for various Rayleigh numbers (Pr = 0.71) by Newton’s method
[7] and multigrid schemes [34]. Therefore, it is a good candidate for comparison. The
first refined mesh (1922 cells with four levels and δ = 2 × 10−3) based on the interface
refinement is shown on the left-hand side of Fig. 11b, while the body-fitted coordinate is
shown on the right (a coarse grid); Ra = 2 × 104. The structured grid for comparison is
finer being 320 × 160 (in the fifth level). The comparison of the calculated isotherms
is shown on the left figure of Fig. 11c, where the refinement is based on both the interface and
velocity errors; the flow pattern is illustrated by the dashed lines. As shown, the agreement
is excellent for both isotherms and the interface shape. Furthermore, the calculated Nusselt
number (Nu = 1.980) is in good agreement with the one by the structured grid (1.977);
the error distribution is similar to Fig. 6b. Again, the error contours for velocity are shown
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FIG. 11. (a) Schematic of the horizontal Bridgman configuration; (b) initial adaptive mesh (left) having
1922 cells with 4 levels and δ = 2 × 10−3 and body-fitted mesh (right); (c) comparison of isotherms (flow is
indicated by the dash-dotted lines) and the final mesh and errors (right); spacing for isotherms = 0.05.

on the right figure by the dashed lines; all the errors in each stages of refinement are
added. Again, at the beginning, the largest errors (−1.56 and 0.63) are distributed near the
boundary. After refinements, the maximum error in the order of 0.5 is distributed uniformly
slightly away from the initial refined zone; one can find the small clusters of error contour
at |e| = 0.1 there. The final mesh (4010 cells) on the right of Fig. 11c indicates that the
refinement indeed follows the error estimators. The total number of cells on the final mesh
(4010) is one order smaller than that by the structured mesh (320 × 160). As mentioned
previously at the beginning of the calculation, a larger interface thickness (6δ) needs to be
used. During mesh refinement, one can further reduce this value to reach the sharp interface
limit. However, in some cases, if δ is reduced too fast, the new interface may be out of the
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FIG. 12. (a) Schematic of one-dimensional directional solidification; (b) adaptive moving mesh (only half is
down) for calculation; the infinite domain is simulated by a finite domain (L = 4); δ = 1 × 10−2.

refined region. Then, the calculation can be greatly retarded and sometimes diverged. On
the other hand, without mesh refinement, gradually reducing the interface thickness during
iterations is useless.

In the previous case, there is no heat of fusion released due to the steady-state assumption.
To further examine the effect of the heat of fusion, we also perform calculation for a one-
dimensional solidification problem as shown in Fig. 12a, where its analytical solution on the
interface position d(t), the solid (Ts), and liquid (Tl) temperatures can be derived [38, 39]
(TC = 0, TH = 1, and Tm = 0.5) as

d(t) = 2γ
√

t;
Ts = Tm

erf (γ )
erf (x/

√
4t); (26)

Tl = 1 + Tm − 1

erf (γ )
erf (x/

√
4t),

where γ is a constant and can be calculated implicitly by

Tm = erf (γ )

(
1 +

√
π

St
γ exp(γ 2)erfc (γ )

)
. (27)
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A sample moving mesh is shown in Fig. 12b (1826 cells). In this case, the solid phase does
not exist at t = 0−, but this does not cause any trouble in calculation. In order to take a bigger
time step for integration, the refined zone cannot be too small. Otherwise, the interface can
easily move out of the refined zone leading to the failure of refinement. If the interface

FIG. 13. (a) Comparison of calculated isotherms (dashed lines) at different times with the analytical results
(solid lines); St = 1 and δ = 1 × 10−2; (b) comparison of calculated interface position (symbols) as a function of
square root of time at different Stefan numbers with the analytical results (solid lines); δ = 1 × 10−2.
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speed is low, a much thinner refined zone can be used. As will be illustrated shortly, this is
the case for the dendritic growth using the phase-field model. The calculated isotherms at
different times are shown in Fig. 13a. As shown, the agreement with the analytical solution
is excellent. The smaller thermal gradient in the melt side of the interface at longer times
is due to the release of the heat of fusion. The positions of the interface at different Stefan
numbers (St) are also plotted against with the square root of time, and they happen to
be linear (as shown by the first formula of Eq. (26)). Again, the agreement is also quite
satisfactory.

Extension to the solidification in a crucible (Pr = 0.71 and Ra = 105), as shown in Fig. 14a,
is also straightforward. Initially, the melt is kept at TH = 1. Due to zero thermal gradients,
the melt has no convection. When t = 0+, we set the walls to be cold at TC = 0, except the
upper one, which is still assumed to be adiabatic. In addition to the solidification at the
walls (with a new phase formation), melt convection also starts. The calculated result
showing isotherms and flow pattern (dashed-line) at t = 0.05 is shown in Fig. 14b (on the
left), and the mesh is shown on the right (about 8000 cells). The larger isotherm spacing
in the melt is also due to the heat of fusion as well as the melt convection (St = 1 and
δ = 5 × 10−3). Again, in this case, we have purposely using a bigger refined zone in order to
use a larger time step for integration. The refinement on the velocity error is also performed,
as illustrated in Fig. 14c. Again, more cells are allocated near the interface, where the
momentum boundary develops (about 500 cells are added). We have put the isotherms with
and without this refinement on the left figure of Fig. 14c for comparison, but the difference
is not significant. Because the upper boundary is adiabatic, the isotherms at the top are
perpendicular to the top wall. At the end of solidification, the melt convection also becomes
weaker due to the smaller space for convection. The thermal gradients become much smaller
as well. The calculation can continue until the temperature of the whole domain approaches
TC . The disappearance of the melt and the interface do not cause any problems during
calculation.

4.3. Phase-Field Simulation of Dendritic Growth

We have presented some examples for solidification using the enthalpy model, where
the phase-field variable is estimated from the temperature as well as the hyperbolic tan-
gent function (Eq. (5)). This approach is suitable to macroscopic solidification, where the
capillary contribution due to the curvature of the interface can be ignored. However, for
microscopic solidification, such as the dendritic growth, interface curvature and thus the
interfacial energy play an important role. In such a situation, the local interface tempera-
ture is no longer the equilibrium melting point from the phase diagram. One has to incor-
porate the Gibbs–Thompson equation [15, 40] into account. Therefore, other approaches,
such as the phase-field simulation or the level set method can also be used to obtain the
phase-field variable. To this kind of simulation, the present numerical method can be adopted
easily as well. In fact, we have found that the solution becomes much easier due to the more
diffusive interface obtained by the phase-field equation. Therefore, the final examples are
devoted to phase-field simulation of dendritic growth. The model developed by Karma
and Rappel [40] is also adopted, which is thermodynamically consistent. For compari-
son purposes, we have purposely ignored the melt convection first. The effects of forced
convection on the growth will be illustrated shortly. The governing equations for dimen-
sionless temperature (θ ≡ Cs(T − T∞)/�H) and the phase-field variable [40] are written
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FIG. 14. (a) Schematic of solidification in a square crucible; (b) calculated isotherms and flow patterns (left)
at t = 0.05 and the mesh (right); (c) comparison of the isotherms (left) after further mesh refinement (right) based
on velocity errors; the isotherms based on the velocity refinement are represented by the dashed lines; St = 1 and
δ = 5 × 10−3.
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as, respectively,

∂θ

∂t
= D∇2θ + 1

2

∂φ

∂t
(28)

τ0w
2 ∂φ

∂t
= ∇ · (w2∇φ) + [φ − λθ(1 − φ2)](1 − φ2)

− ∂

∂x

(
w

∂w

∂β

∂φ
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)
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∂y

(
w

∂w

∂β

∂φ

∂x

)
, (29)

where D is the dimensionless thermal diffusivity, w = 1 + ε cos 4(β − β0), β = tan−1[(∂ϕ/

∂y)/(∂ϕ/∂x)], and τ0 is a time constant; ε is a parameter for the interface energy anisotropy
and β0 the seed orientation. Since the four-fold symmetry is considered, if β0 = 0◦, one can
take advantage of symmetry, and only a quarter of the domain is needed for diffusive growth.
However, when seed orientation is arbitrary, a full domain is required. To examine effect
grid anisotropy, we have used a full domain for computation. In addition, for comparison
purposes, the phase-field variable φ now ranges from 1 for solid and −1 for liquid, and
φ = 0 is at the interface. Due to the slow development of the dendrite, typically the time
step is usually small (∼0.01 τ0). Therefore, the refined zone can be very thin, which saves
a tremendous amount of cells, especially for the simulation of low supercooling, where
an extremely large domain is necessary. A sample of calculation is shown in Fig. 15a for
the mesh (the first quarter), the isotherms (the second quarter), and the phase-field variable
(the third quarter) for a fully developed dendrite (the fourth quarter) at the dimensionless
supercooling (�) being 0.55; � ≡ Cl(Tm − T∞)/�H , where T∞ is the far-field temperature.
We have purposely magnified the mesh at the interface locally to show the mesh refinement.
In this case, eight levels of grids are used and the cell number is 129036 for a full domain
in Fig. 15a (only the mesh of a quarter domain is shown). In other words, the ratio of
the largest to the smallest cell sizes is 28. Therefore, once the refinement can be carried
out effectively, the mesh can cover different length scales for simulation. If an explicit
integration scheme is used, the largest time step for integration is limited by the smallest
cell size (the Courant–Friedrichs–Lewy (CFL) condition). Although a fully implicit scheme
is used for the integration, due to the thin refined zone, to avoid numerical instability, the
advancement of the new interface needs to be inside the refined zone. This is particularly
true when side branching becomes important [41].

The comparison of our calculated dendrite tip speed for the supercooling of 0.55 with
the solvability theory [40] is shown in Fig. 15b. Again, as shown the solvability limit can be
reached as well and the agreement is very good. To examine the effect of growth orientation,
we have used a full domain in this case. This also allows us to further examine the effect
of grid anisotropy. Different seed orientations are considered. For β0 = 0◦, the tip selection
is in the x- or y-direction, and the agreement with the theory is very good. In this case,
the calculation of the tip speed can be more accurate due to the search of zero contour of
the phase-field variable at each time step. Although the calculated dendrite shapes with
different orientations agree quite well with that of β0 = 0◦, the calculation of the tip speed
is more tedious and less accurate. Nevertheless, the error of the tip speed is still within
3%; the dendrite tip grows slightly faster for β0 = 30◦ and 45◦. Indeed, the grid anisotropy
slightly affects the tip speed and its effect can be further reduced if the grid is further
refined. Furthermore, the calculation is tested for several supercoolings, and the agreement
with reported values is very good. Furthermore, the performance is also comparable to that
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FIG. 15. (a) Calculated dendrite shape (the fourth quarter), mesh (the first quarter), isotherms (the second
quarter), and the phase-fields (the third quarter); a local lookup of the mesh is further illustrated by arrows indicating
the multilevel and multiscale nature of the refinement; the spacing = 0.055 for isotherms and 0.2 for phase-field
variable; (b) evolution of tip speeds (for three different growth orientations); the solvability theory is shown by
the dashed horizontal line. The dendrite shapes of different growth orientations are overlapped for comparison.
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FIG. 16. (a) Calculated dendrite growth for phase-field variable (upper left), mesh (upper right), isotherms
(lower lest), and flow patterns (lower right) at different times; the contour spacing = 0.055 for isotherms;
(b) comparison of tip speed evolution at three locations with the results by Beckermann et al. [15].

described by Provatas et al. [25] using an adaptive finite element method that the CPU time
is proportional to the domain size. However, as compared with the their refinement scheme
using triangular cells, the present approach seems to be much easier. Detailed comparison
with the previous study and theory can be found elsewhere [41]. Furthermore, the present
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approximation is fully conserved due to the nature of the FVM approximation, so that the
extension to the solutal calculation, which requires a highly conserved scheme, may be
easier. Furthermore, the converge speed of the calculation at each time step is also faster
than that by enthalpy model with a very small δ. The interface thickness can be judged from
the contours (10 contours) of the phase-field variable in Fig. 15a. In addition, according to
Karma and Rappel [40], if the parameters are carefully chosen, such a thickness approaches
the sharp-interface limit.

The final example is carried out for the dendritic growth under a forced convection for
� = 0.55. D = 4, and ε = 0.05. This example is the same as the one used by Beckermann
et al. [15]; they used a uniform mesh for calculation, and they showed by simulation for the
first time the effect of flow on the dendrite tip speed. The calculated dendrite shapes (phase
fields) and meshes at different times are shown in the top of Fig. 16a; the corresponding
isotherms and flow fields are shown in the lower figures. As shown, the tip at the upstream
grows faster due to the thinner thermal boundary layer. The evolution of the tip velocities
is further illustrated in Fig. 16b; the results of Beckermann et al. [15] are also put together
for comparison. As shown, they are in good agreement. However, the cell numbers used
here (2300, 5678, 7430 at t = 15, 70, 100τ0, respectively) are one order of magnitude
smaller than that used by Beckermann et al. (512 × 256), while our smallest cell size
is also smaller than theirs. Due to the fully implicit scheme used here for integration, a
much bigger time step being about 0.2τ0 can be used (0.01τ0 for an explicit scheme on
the phase-field equation), and this reduces overall CPU time dramatically. To save space,
further discussion on the dendritic growth, especially at low supercooling (� = 0.25 and
0.1) under a convective environment will be discussed elsewhere [41]. Furthermore, the grid
at the root level has some effects on the result. Too coarse a grid will affect the overall growth
environment.

5. CONCLUSIONS

An adaptive finite volume method using dynamic data structures, implemented in FOR-
TRAN90, is developed for solidification problems. The method uses a fixed-grid and two-
phase equations to treat free or moving interfaces as well as the associated heat transfer and
fluid flow through a phase-field variable, which is defined by temperature fields and inter-
face thickness. In addition to the refinement on the interfaces or boundaries, error estimators
are also used for the refinement and the coarsening.

For the simulation of two-phase problems having a sharp interface, the accuracy of the
fixed-grid approach using a structure-grid is usually limited by the cell size. However,
through the adaptive mesh, the problem could be resolved while using much less cells for
calculation. The strategy proposed here starts from a coarse grid having a thick interface.
As the problem converges at coarse levels, mesh refinement or coarsening is carried out
according to geometric constraints or error estimators, followed by the interface thinning.
Through the extensive benchmarkings with the front tracking approach, we have found that
the shape-interface problem can be well modeled. In addition, this approach is particularly
useful for a domain having complex immersed interfaces (or with interface merging or
splitting) that can be difficult to tackle by front tracking.

The present approach can be further extended to phase-field simulation. We have illus-
trated successfully the simulation of dendritic growth using the phase-field equation. For the
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case without convection, the calculated dendrite tip speeds at various undercoolings agree
very well with the solvability theory. With a forced convection, the calculated result also
agrees well with previous calculation, but uses much less cells. Therefore, we believe that
further extensions to other multiphase systems, such as bubbling and sintering, may be fea-
sible. One may also use level sets or other definitions of the phase-field variable to describe
the moving interfaces. Due to the simplicity of the refinement scheme and the related data
structures, the extension to three-dimensional problems is straightforward. However, one
needs to keep this in mind that the computational cost for 2D problems is proportional to
the arclength of the interface (for a thin refined zone). However, for 3D problems, the cost
is proportional to the overall interfacial area. Therefore, a dramatic increase of CPU time is
expected. Furthermore, although the approach is also suitable for a highly diffusive inter-
face, as the interface thickness increases the computational cost increases as well. A careful
decision needs to be made for the refinement inside the interface region for a cost-effective
simulation.

Finally, due to the nature of the multilevel in the implementation, multigrid methods
[34, 36] fi
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